Code source wiki de 8JUE0N33 - Stockage géologique d'énergie
Modifié par Eleanore Gitton le 11/06/2025 - 10:46
Afficher les derniers auteurs
author | version | line-number | content |
---|---|---|---|
1 | (% class="fixed-table wrapped" %) | ||
2 | |(% class="highlight-red" colspan="18" data-highlight-colour="red" rowspan="2" %)((( | ||
3 | == UE: Stockage géologique d'énergie == | ||
4 | )))|(% colspan="4" style="text-align:center" %)((( | ||
5 | **SEMESTRE** | ||
6 | )))|(% class="highlight-red" colspan="2" data-highlight-colour="red" style="text-align:center" %)((( | ||
7 | **S8** | ||
8 | )))|(% colspan="3" style="text-align:center" %)((( | ||
9 | **CODE** | ||
10 | )))|(% colspan="4" style="text-align:center" %)((( | ||
11 | **8JUE0N33** | ||
12 | )))|(% colspan="4" style="text-align:center" %)((( | ||
13 | **ECTS** | ||
14 | )))|(% class="highlight-red" colspan="2" data-highlight-colour="red" style="text-align:center" %)((( | ||
15 | **1** | ||
16 | ))) | ||
17 | |(% colspan="2" style="text-align:center" %)((( | ||
18 | **CM** | ||
19 | )))|(% colspan="2" style="text-align:center" %)((( | ||
20 | **TD** | ||
21 | )))|(% colspan="2" style="text-align:center" %)((( | ||
22 | **TP** | ||
23 | )))|(% colspan="2" style="text-align:center" %)((( | ||
24 | **EI** | ||
25 | )))|(% colspan="5" style="text-align:center" %)((( | ||
26 | **travail personnel** | ||
27 | )))|(% colspan="6" style="text-align:center" %)((( | ||
28 | **langue enseignement** | ||
29 | ))) | ||
30 | |(% colspan="18" %)((( | ||
31 | |||
32 | )))|(% colspan="2" style="text-align:center" %)((( | ||
33 | 12.5 h | ||
34 | )))|(% colspan="2" style="text-align:center" %)((( | ||
35 | 0 h | ||
36 | )))|(% colspan="2" style="text-align:center" %)((( | ||
37 | 0 h | ||
38 | )))|(% colspan="2" style="text-align:center" %)((( | ||
39 | 0 h | ||
40 | )))|(% colspan="5" style="text-align:center" %)((( | ||
41 | 12 h | ||
42 | )))|(% colspan="3" style="text-align:center" %)((( | ||
43 | **FR** | ||
44 | )))|(% colspan="3" style="text-align:center" %)((( | ||
45 | **ENG** | ||
46 | ))) | ||
47 | |(% colspan="6" %)((( | ||
48 | **Responsable(s):** | ||
49 | )))|(% colspan="25" %)((( | ||
50 | Irina Panfilov | ||
51 | )))|(% colspan="3" style="text-align:center" %)((( | ||
52 | NON | ||
53 | )))|(% class="highlight-blue" colspan="3" data-highlight-colour="blue" style="text-align:center" %)((( | ||
54 | OUI | ||
55 | ))) | ||
56 | |(% colspan="6" %)((( | ||
57 | **Intervenant(s):** | ||
58 | )))|(% colspan="3" %)((( | ||
59 | **ENSG** | ||
60 | |||
61 | )))|(% colspan="9" %)((( | ||
62 | Irina Panfilov, Judith Sausse. | ||
63 | )))|(% colspan="5" %)((( | ||
64 | **extérieur(s)** | ||
65 | )))|(% colspan="14" %)((( | ||
66 | NON | ||
67 | ))) | ||
68 | |(% colspan="6" %)((( | ||
69 | **prérequis:** | ||
70 | )))|(% colspan="14" %)((( | ||
71 | Hydrodynamique souterraine, transferts de chaleur | ||
72 | )))|(% colspan="4" style="text-align:left" %)((( | ||
73 | **documents:** | ||
74 | )))|(% colspan="13" style="text-align:left" %)((( | ||
75 | ppt de présentation, pdf de cours | ||
76 | ))) | ||
77 | |(% class="highlight-blue" colspan="37" data-highlight-colour="blue" %)((( | ||
78 | == Course: Geological storage of energy == | ||
79 | ))) | ||
80 | |(% class="highlight-grey" colspan="37" data-highlight-colour="grey" %)((( | ||
81 | **ORGANISATION ET CONTENU PÉDAGOGIQUE** | ||
82 | ))) | ||
83 | |(% class="highlight-blue" colspan="37" data-highlight-colour="blue" %)((( | ||
84 | **~1. Heat storage in aquifer (geothermal storage)**: | ||
85 | |||
86 | **Introduction: **the principal technical scheme of heat storage in an aquifer and three main problems that should be solved to forecast the good functioning of this technology: to control the dynamics of the interface between the hot and the cold water; to know calculate the heat leaks beyond the aquifer; to take into account the phenomenon of water circulation. | ||
87 | |||
88 | **Dynamics of the interface between hot and cold water: **equations of heat transport and water flow; separation of flow and heat transport problems; method of streamlines; hydrodynamic problem of a doublet of wells; solution of the hydrodynamic problem by the method of complex potential; calculation of streamlines: detection of the zones of influence of two wells; solution of the heat transport problem along a streamline; explicit relation for the heat front; calculation of the heat front depending on the injection rate; critical injection rate; optimal parameters of the system. | ||
89 | |||
90 | **Calculation of the heat leaks outside the aquifer: **we explain the method of Lauwerier, give a short demonstration how this condition has been obtained, and give the examples of its application to geothermal heat storage. | ||
91 | |||
92 | **Thermal convection and water circulation in aquifer: **explanation of the Rayleigh-Benard convection; effect of thermodiffusion as a second mechanism that can provoke water circulation ; insufficiency of the Darcy equation; Brinkmann’s model of water flow in porous medium; the method and examples of calculating | ||
93 | |||
94 | **2. Underground storage of electricity/hydrogen**: technical principle and industrial examples: Hydrogen properties, production, use; Problem of storage and massive storage; storage of pure H2 in salt caverns; Storage of non-pure H2 in aquifers; Storage of H2 in methane storage; the main hydrodynamic problem: lateral spreading and leakage. | ||
95 | |||
96 | **3. Gravitational storage of electricity: **technical principle and industrial examples in the world and in France; principle of calculating the balance between the energy stored and energy consumed; optimal parameters of the storage; new versions of gravitational storage. | ||
97 | |||
98 | **4. Underground storage of liquefied gas in tight rocks**: technical principle and industrial examples: main problems; calculation of the water table in rocks and the temperature field. | ||
99 | |||
100 | **5. Energy storage by compressed air**: technical principle and industrial examples: calculation of the degree of air compression and optimal pressure. | ||
101 | ))) | ||
102 | |(% class="highlight-grey" colspan="37" data-highlight-colour="grey" %)((( | ||
103 | **ACQUIS et COMPÉ**TENCES | ||
104 | ))) | ||
105 | |(% colspan="37" %)((( | ||
106 | **Acquis d'apprentissage fondamentaux (AF)** | ||
107 | ))) | ||
108 | |(% class="highlight-#abf5d1" colspan="2" data-highlight-colour="#abf5d1" style="text-align:center" title="Couleur d'arrière-plan : Vert clair 100 %" %)((( | ||
109 | **AF1** | ||
110 | )))|(% class="highlight-#abf5d1" colspan="35" data-highlight-colour="#abf5d1" title="Couleur d'arrière-plan : Vert clair 100 %" %)((( | ||
111 | To learn various technologies and principles of geological storage of the excessively produced energy | ||
112 | ))) | ||
113 | |(% class="highlight-#abf5d1" colspan="2" data-highlight-colour="#abf5d1" title="Couleur d'arrière-plan : Vert clair 100 %" %)((( | ||
114 | **~ AF2** | ||
115 | )))|(% class="highlight-#abf5d1" colspan="35" data-highlight-colour="#abf5d1" title="Couleur d'arrière-plan : Vert clair 100 %" %)((( | ||
116 | To learn scientific and engineering approaches of solving fundamental hydrodynamic and thermal problems related to energy storage, and to optimize the parameters | ||
117 | ))) | ||
118 | |(% class="highlight-grey" colspan="37" data-highlight-colour="grey" %)((( | ||
119 | **Modalités de contrôle des Connaissances et des Compétences** | ||
120 | ))) | ||
121 | |(% colspan="5" %)((( | ||
122 | Examen final: | ||
123 | )))|(% colspan="5" %)((( | ||
124 | OUI | ||
125 | )))|(% colspan="5" %)((( | ||
126 | Contrôle continu: | ||
127 | )))|(% colspan="5" %)((( | ||
128 | NON | ||
129 | )))|(% colspan="5" %)((( | ||
130 | Rapport/Projet: | ||
131 | )))|(% colspan="5" %)((( | ||
132 | NON | ||
133 | )))|(% colspan="4" %)((( | ||
134 | Oral: | ||
135 | )))|(% colspan="3" %)((( | ||
136 | NON | ||
137 | ))) | ||
138 | |||
139 | [[image:attach:DDRS.png||thumbnail="true" height="36"]] |