Découvrez les nouveautés de cette version : Fonctionnalités, améliorations et évolutions vous attendent ! 👉 Cliquez ici pour en savoir plus

8KUE0N33 - Stockage géologique d'énergie

Version 6.1 par Judith Sausse le 10/08/2022 - 18:21

UE: Stockage géologique d'énergie

SEMESTRE

S8

CODE

8KUE0N33

ECTS

1

CM

TD

TP

EI

travail personnel

langue enseignement


12.5 h

0 h

0 h

0 h

0 h

FR

ENG

Responsable(s):

Michel Panfilov

NON

OUI

Intervenant(s):

ENSG

Michel Panfilov, Judith Sausse.

extérieur(s)

NON

prérequis:

Hydrodynamique souterraine, transferts de chaleur  

documents:

ppt de présentation, pdf de cours

Course: Geological storage of energy

ORGANISATION ET CONTENU PÉDAGOGIQUE

1. Heat storage in aquifer (geothermal storage):

Introduction: the principal technical scheme of heat storage in an aquifer and three main problems that should be solved to forecast the good functioning of this technology: to control the dynamics of the interface between the hot and the cold water; to know calculate the heat leaks beyond the aquifer; to take into account the phenomenon of water circulation. 

Dynamics of the interface between hot and cold water: equations of heat transport and water flow; separation of flow and heat transport problems; method of streamlines; hydrodynamic problem of a doublet of wells; solution of the hydrodynamic problem by the method of complex potential; calculation of streamlines: detection of the zones of influence of two wells; solution of the heat transport problem along a streamline; explicit relation for the heat front; calculation of the heat front depending on the injection rate; critical injection rate; optimal parameters of the system. 

Calculation of the heat leaks outside the aquifer: we explain the method of Lauwerier, give a short demonstration how this condition has been obtained, and give the examples of its application to geothermal heat storage.

Thermal convection and water circulation in aquifer: explanation of the Rayleigh-Benard convection; effect of thermodiffusion as a second mechanism that can provoke water circulation ; insufficiency of the Darcy equation; Brinkmann’s model of water flow in porous medium; the method and examples of calculating  

2. Underground storage of electricity/hydrogen: technical principle and industrial examples: Hydrogen properties, production, use; Problem of storage and massive storage; storage of pure H2 in salt caverns; Storage of non-pure H2 in aquifers; Storage of H2 in methane storage; the main hydrodynamic problem: lateral spreading and leakage. 

3. Gravitational storage of electricity: technical principle and industrial examples in the world and in France; principle of calculating the balance between the energy stored and energy consumed; optimal parameters of the storage; new versions of gravitational storage.

4. Underground storage of liquefied gas in tight rocks: technical principle and industrial examples: main problems; calculation of the water table in rocks and the temperature field.   

5. Energy storage by compressed air: technical principle and industrial examples: calculation of the degree of air compression and optimal pressure.

ACQUIS et COMPÉTENCES

Acquis d'apprentissage fondamentaux (AF)

AF1

To learn various technologies and principles of geological storage of the excessively produced energy

 AF2

To learn scientific and engineering approaches of solving fundamental hydrodynamic and thermal problems related to energy storage, and to optimize the parameters

Modalités de contrôle des Connaissances et des Compétences

Examen final:

OUI

Contrôle continu:

NON

Rapport/Projet:

NON

Oral:

NON

DDRS.png